Structure and Oxidation Behavior of Nickel Nanoparticles Supported by YSZ(111)

نویسندگان

  • V. Vonk
  • N. Khorshidi
  • A. Stierle
چکیده

Nickel nanoparticles supported by the yttria-stabilized zirconia (111) surface show several preferential epitaxial relationships, as revealed by in situ X-ray diffraction. The two main nanoparticle orientations are found to have their [111] direction parallel to the substrate surface normal and ∼41.3 degrees tilted from this direction. The former orientation is described by a cube-on-cube stacking at the oxide-metal interface and the latter by a so-called coherent tilt strain-relieving mechanism, which is hitherto unreported for nanoparticles in literature. A modified Wulff construction used for the 111-oriented particles results in a value of the adhesion energy ranging from 1.4 to 2.2 Jm2, whereby the lower end corresponds to more rounded particles and the upper to relatively flat geometries. Upon oxidation at 10-3 Pa of molecular oxygen and 673 K, a NiO shell forms epitaxially on the [111]-oriented particles. Only a monolayer of metallic nickel of the top (111) facets oxidizes, whereas the side facets seem to react more severely. An apparent size increase of the remaining metallic Ni core is discussed in relation to a size-dependent oxidation mechanism, whereby smaller nanoparticles react at a faster rate. We argue that such a preferential oxidation mechanism, which inactivates the smallest and most reactive metal nanoparticles, might play a role for the long-term degradation of solid oxide fuel cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study of oxidation behavior of AZ91D alloy with YSZ coating using EIS

Oxidation behavior of AZ91D magnesium alloy with 3YSZ coating and aluminum interlayer was studied in air at 250 °C using electrochemical impedance spectroscopy EIS, scanning electron microscopy SEM, and X-ray diffraction XRD. The oxidation process was carried out in various duration times from 1 to 10 h. A three-electrode electrochemical cell was employed for all the EIS measurements. Also, to ...

متن کامل

Catalytic Aerobic Oxidation of Alkenes by Ag@Metal Organic Framework with High Catalytic Activity and Selectivity

By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...

متن کامل

Electrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media

In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly electrosynthesized nanocomposites: platinum and its alloys (copper and nickel) anoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE electrocatalysts). The electrosynthesized nanocomposites were characterized by scan...

متن کامل

Synthesis of Sulfoxides in Water by New Magnetic Nanoparticles Supported Tungstic Acid (MNP-TA), as a Selective Oxidation Method of Sulfides

Different sulfides were oxidized to the corresponding sulfoxides, which is useful in drug industriesand important in biological activities, with a novel magnetically separable catalyst consisting oftungstic acid supported on silica coated magnetic nanoparticles in water as a green solvent in a goodto excellent yield without any over oxidation to sulfones in a simple, selective, and eco-friendly...

متن کامل

Oxidation resistance of the nanostructured YSZ coating on the IN-738 superalloy

Conventional and nanostructured YSZ coatings were deposited on the IN-738 Ni super alloy by the atmospheric plasma spray technique. The oxidation was measured at 1100°C in an atmospheric electrical furnace. According to the experimental results the nanostructured coatings showed a better oxidation resistance than the conventional ones. The improved oxidation resistance of the nanocoating could ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2017